翻訳と辞書
Words near each other
・ Dirac algebra
・ Dirac bracket
・ Dirac comb
・ Dirac delta function
・ Dirac equation
・ Dirac equation in curved spacetime
・ Dirac equation in the algebra of physical space
・ Dirac fermion
・ Dirac hole theory
・ Dirac large numbers hypothesis
・ Dirac measure
・ Dirac operator
・ Dirac Prize
・ Dirac sea
・ Dirac spectrum
Dirac spinor
・ Dirac string
・ Dirac's theorem
・ Dirac, Charente
・ Dirachma
・ Dirac–von Neumann axioms
・ Diradical
・ Dirakari
・ Diraklu
・ Diralo Point
・ Diran
・ Diran (disambiguation)
・ Diran Adebayo
・ Diran Alexanian
・ Diran Kelekian


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dirac spinor : ウィキペディア英語版
Dirac spinor
In quantum field theory, the Dirac spinor is the bispinor in the plane-wave solution
:\psi = \omega_\vec\;e^ \;
of the free Dirac equation,
:(i\gamma^\mu\partial_-m)\psi=0 \;,
where (in the units \scriptstyle c \,=\, \hbar \,=\, 1)
:\scriptstyle\psi is a relativistic spin-1/2 field,
:\scriptstyle\omega_\vec is the Dirac spinor related to a plane-wave with wave-vector \scriptstyle\vec,
:\scriptstyle px \;\equiv\; p_\mu x^\mu,
:\scriptstyle p^\mu \;=\; \,\, \vec\} is the four-wave-vector of the plane wave, where \scriptstyle\vec is arbitrary,
:\scriptstyle x^\mu are the four-coordinates in a given inertial frame of reference.
The Dirac spinor for the positive-frequency solution can be written as
:
\omega_\vec =
\begin
\phi \\ \frac} \phi
\end \;,

where
:\scriptstyle\phi is an arbitrary two-spinor,
:\scriptstyle\vec are the Pauli matrices,
:\scriptstyle E_\vec is the positive square root \scriptstyle E_^2}
==Derivation from Dirac equation==
The Dirac equation has the form
:\left(-i \vec \cdot \vec + \beta m \right) \psi = i \frac \,
In order to derive the form of the four-spinor \scriptstyle\omega we have to first note the value of the matrices α and β:
:\vec\alpha = \begin \mathbf & \vec \\ \vec & \mathbf \end \quad \quad \beta = \begin \mathbf & \mathbf \\ \mathbf & -\mathbf \end \,
These two 4×4 matrices are related to the Dirac gamma matrices. Note that 0 and I are 2×2 matrices here.
The next step is to look for solutions of the form
:\psi = \omega e^,
while at the same time splitting ω into two two-spinors:
:\omega = \begin \phi \\ \chi \end \,.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dirac spinor」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.